


Stabi l i ty  of a Pure Electron Plasma 

i n  Cylindrical Geometry* 

bY 

Georg Knorr 

Department of Physics and Astronomy 
The University of Iowa 
Iowa City, Iowa 52240 

August 1968 

* 
This work was supported i n  par t  by the Office of Naval Research 
under contract No. Nonr 1509( 06) and National Aeronautics and Space 
Administration under contract No. NGR-16-001-043. 



2 

ABSTRACT 

The s t a b i l i t y  of a cylindrical  cold plasma consisting of 

electrons only i s  investigated analytically.  The geometry i s  

similar t o  that  of the proposed heavy ion plasma accelerator. The 

dispersion equation i s  derived and discussed f o r  the case that  the 

plasma rotates  l i ke  a r ig id  body. The result ing i n s t a b i l i t i e s  are 

found t o  be much more violent than those studied by Buneman e t  al. 

fo r  a s t ra ight  geometry. The underlying physics i s  discussed. 
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I. INTRODUCTION 

The properties of grossly non-neutral plasmas have received 

considerable a t tent ion recently because of several possible appli- 

cations.1J2,3 One of these,l the heavy ion plasma accelerator 

(HIPAC), makes use of an electron cloud which i s  suspended by a strong 

magnetic f i e l d  i n  a metal cylinder of toroidal geometry. The 

ultimate fa i lure  o r  success of such a device w i l l  c r i t i c a l l y  depend 

on a favorable s t a b i l i t y  behavior of the electron plasma in  such a 

geometry. 

The macroscopic s t ab i l i t y  for  a cold electron plasma i n  a 

carthesian slab geometry has been investigated by Buneman, Levy, 

and L i n ~ o n . ~  

diocotron in s t ab i l i t y  can be avoided by a suitable geometry which 

does not allow such waves and the cyclotron in s t ab i l i t y  becomes 

unimportant because the growth r a t e  i s  proportional t o  

which becomes insignificant i f  q = O(10 

q = ”p /we (0”p = h e  n/m; wc = eB/mc). 

Their results were very encouraging: A long wave Length 

ex-p(- 2/q) 
-2 

). q i s  defined as  
2 2  2 2 

Although these resu l t s  apply s t r i c t l y  only to  a carthesian 

plasma slab (Fig. l ( a ) ) ,  i t  has been assumed t o  hold--at l ea s t  

order of magnitude-wise--also f o r  the HIPAC geometry (Fig. l ( b ) ) .  

There are, however, important differences : 
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The slab geometry has two plasma boundaries, the zylindrical geomfetry 

only one. The second boundary condition i s  tha t  for  r = 0 the dis- 

turbedpotent ia l  has t o  be f in i t e .  A s  a consequence, the diocotron 

in s t ab i l i t y  disappears fo r  a purely azimuthal disturbance i f  i ne r t i a  

e f fec ts  are neglected. This has been studied by Timofee+,6 and 

Levy. 7 

Another important difference i s  tha t  i n  Fig. l ( a )  there w i l l  

always be a "slipping" i n  the beam, i. e., the - -  E x B d r i f t  w i l l  always 

depend on x. In  Fig. l ( b ) ,  however, the plasma may rotate l i ke  a 

sol id  body with no in te rna l  "slipping". These differences may have 

profound consequences on the osci l la t ion modes and i n  par t icular  on 

the growth ra tes  of the in s t ab i l i t i e s .  It i s  f o r  t h i s  reason that  

this investigation has been undertaken. 

The remainder of t h i s  paper w i l l  proceed as  follows: In  

Section I1 we s t a t e  the basic equations and the equilibrium solutions. 

Section 111 deals with the derivation of the dispersion equation. 

It turns out tha t  it can be writ ten as an algebraic equation 

involving only Bessel functions. 

equation and the result ing in s t ab i l i t i e s  fo r  q<C 1. 

Finally, the differences of the resu l t s  i n  the two geometries are 

W e  then discuss the dispersion 

discus sed. 
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11. EQUILIBRIUM 

The equilibrium solution i s  given by 

no = no(.) 

v = V(r)e amo. Er0 = - - 9  
Er O where V = -e -; - -4 B a r  

We approximate the toroidal geometry of HIPAC by a straight 

cylinder and periodic boundary conditions at z = o and z = z 

toroidal e f fec ts  due t o  curved f i e l d  l ines  and the inhomogeneity 

Typical 
0' 

of the magnetic f i e l d  are thus excluded. 

believed that t h i s  i s  a reasonably good approximation t o  zeroth 

However, it i s  generally 

order (compare the l i t e r a tu re  on s te l le ra tor  geometry, e.g., Ref .8) .  

Consider i n  t h i s  geometry a cold nonrelativist ic electron 

plasma, which i s  described by the continuity equation, the equation 

of motion, and Poisson's equation: 

2 v TQ = 4mn. 

c 
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If we assume a constant density for r I a, we find 

It will turn out that t h i s  assumption will make the dispersion 

equation particularly simple. 
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111, DISPEBSION EQUATION 

If we disturb the equilibrium, we may write the perturbed 

quantit ies as: 

{:[:I} e i w t  + ivcp + ikz 

Linearizing i n  the usual way, the equation of motion can now be 

written as: 

The determinant D of t h i s  system i s  given by: 
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P 

We can easi ly  solve fo r  the veloci t ies  ur and u * 
'p' 

e k @  uz = - 
W + V F  

v .  m 

If n o ( r )  i s  a constant, D and all coefficients i n  Eq, (3.1) 

become constants and we  obtain for  the divergence of - u: 

e V '  u _ = -  m 

where D i s  now given by: 

2 D = ( 6 0 ~  - o)2 - (w  +w) . 

density : 

2 

2 
V - @ +  
r 

d 

the continuity equation, we derive the perturbed 
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Poisson's equation can now be integrated fo r  the case of constant 

density along r from r = a - E t o  a + e  , G c 1, and we obtain a t  

once the boundary condition: 

and Gin r e f e r  t o  the potent ia l  outside or  inside of the boundary, $out 

"he only term which survives the l imiting process e -3 0 i s  the 

term With no, which degenerates in to  an 6-functionO All other 

terns  remain f in i t e .  

For the domain inside the boundary, we combine Eqs. (2.3), 

( 3 . 3 ) ,  and (3.2)  t o  obtain: 

-7- 

w i t h  x2 = k2 Df - $2 ( w  2) (D + $ 2 )  . 
4- VO) 

(3.5) 

(3.6) 
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The only admissable solution is:  

gin = cIv (4. (3.7) 

Iv(z)  i s  the modified Bessel function of the first kind. 

For the vacuum region a 5 r 

R i s  inf ini te .  

R, we assume for  s impl ic i ty tha t  

Then the solution of V%out = 0 i s  given by; 

where K (2) i s  the modified Bessel function o f  second kind. 

continuity of the potential  requires: 

The 
V 

cIv (ua)  = hKv (ka). (3.8) 

If we now divide the boundary condition (3.4) by Eq. (3.8), 

we obtain the desired dispersion relation: 

(3.9) 



The simplicity of Eq. (3.9) contrasts the complexity of 

the  dispersion equation found by Buneman e t  alO4 This i s  due 

t o  the absence of slipping, i n  our case. 

We t ry  now t o  get  some insight in to  the possible wave 

modes and i n s t a b i l i t i e s  of the  dispersion equation j u s t  derived, 
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I V o  INSTABILITIES 

We sha l l  make use of the asympfatic expressions for  the 

logarithmic derivatives of the Bessel functions. 

For z 3 0, we have: 

For z a( 00, 

1 
dx v 22 I, -dT I, 

d @K (z) = + 1 + - 1 +...; 22 
mI ( z )  = 1 - - +..; A E 

It i s  usef'ul t o  introduce the following quantit ies:  

-+o 

u) + va A uh2 
WC - a and =Iwc - 0)'- (1 - ? * )  

Y '  

If u) has an imaginary part, so has ye 

For q << 1, the cyclotron frequency i s  characterized by 

A 
y = 1, the diocotron osc i l la t ion  i s  mostly found at y = O ( q ) .  

Note tha t  q << 1 implies q q.  
A 

(4.2) 



2 2  with u2a2 = k a 

and 7 = 4 v/ak. 

Let's first 

with Eq. (4.1) the 

consider the case, k = 0. Eq. (4.4) yields 

solutions : 

Alternatively, the 3 solutions 

A 112 1/2 (1 + 2q) 

can be written as: 

(4.6) 1 
w 2 /  we = -1 - 7 vq, 

- v), (k = 0, v f 0 ) .  



1 4  

q I s  completely arbi t rary.  Clearly, the f i rs t  two solutions are  

cyclotron oscil lations,  whereas the th i rd  i s  the diocotron branch. 

The diocotron mode has been considered fo r  a wider class of 

density distributions by Timofeev' who showed tha t  for monotonically 

decreasing distributions, t h i s  branch i s  always stable. 

We specialize now for  small 4, and allow (ak) t o  be 

different from 0, yet so small tha t  

1 >> $ >> (ak)*. 

The resu l t  i s  tha t  the solutions remain s t i l l  stable.  However, i f  

(ak) grows further, so that we have 

2 1 >> (ak) >> 6 , 

a more interest ing behavior develups. 

1 A  2 2  y2 = -1 - 9 and y3 = p into u a 

we f ind tha t  

(4.7) 

(4.8) 



d Thus, we have t o  use now the asyarptotic form (4.2) for  AnI,(m4. 

With the assumption (4.8), our dispersion assumes the 

form: 

We consider now the diocotron branch and look for a 

solution I y 1 <<1 . Eq. ( b a g )  can be written as: 

For ka << 1, we have Av = v/ka >> 1 and ?/A zz 4. 

Eq. (4.10) i s  of the form y = f(y),  and we may'find a solution 

by i terat ion,  i f  I f '(y) 

For example, we have 

.< 1 i n  the considered domain of y. 

1 f '(4) 1 = O(q '/*/A , ) c: 1. 
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In this way, we find: 

A ka A 1/2 y = q f i - q  
V (4.11) 

which i s  clearly unstable. 
2 2  

If we now check our assumption 1 N a 1 >> 1, it turns out 
2 2 A  that  it i s  rigorously- sat isf ied only i f  (ka) / v  <<q e Simultaneous13 

Eq. (4.7) must hold and, therefore, the relation 1 e< (ka)  2 /q ~ 9 ;  v 2 . 
This excludes v = 1 and 2 but we may expect tha t  they, too, are 

unstable 

The opposite case i s  ka >> 1, Av = 1. We find from Eq. (4.10): 

v*/t = (1 - y*) (2y2 + y - 1 - 8 ) .  

The solutions y = - + 1/4 

2 
violate our assumption (4.8) as (ua) 

are erroneous. 

becomes of order one and 

This means tha t  we cannot explore t h i s  part  of 



the  diocotron mode 

more sophisticated 

We turn our 
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with our simple approach, but have t o  apply 

means. 

attention now t o  in s t ab i l i t i e s  i n  the neighbor- 

hood of the cyclotron frequency. It i s  convenient t o  introduce: 

y2 = 1 + G ,  8 ex 1; y = 6(1 + p), 1 6 = zk1; 

and t o  write Eq. (4,9) as an equation for  8,  which we assume t o  

be small. After squaring both sides, we obtain: 

(4.12) 2 2 1 2 
(A, - 1 ) ~  + 2(6Av7 + $)E: + = 0 .  

In deriving Eq. (4.12), we neglected terms of order E: and q 

compared t o  1. From the solution 

we see tha t  one solution with 6 = +I i s  always stable, The other 
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i s  stable if :  

& ka 
__I 

A v < &  + v .  

b t ' s  consider the case ka << 1. 

longer sufficient t o  determine s tab i l i ty  because the leading terns 

Eq. (4.1) for A v b  now no 

just cancel. 

of Av fo r  -11 argument (compare Ref.  9) e 

We have t o  take into account more terms in  the expension 

For v = 1, we have: 

%=z 1 (1 - (ka12 aa3. % - (ka12(y + $ 9 9  (4.15 1 

where y = 0.577 is  Euler's constant. This yields: 

ka < 0.532, ' (v = 1) (4.16) 

instabi l i ty ,  Eq. (4.13) becomes: 

The upper bound for  (ka) i n  (4.16) i s  already beyond the limit 

of val idi ty  of our pi9 because the second and third 



term i n  the bracket of (4.15) d be small compared 

For v = 2, we find: 

"he condition fo r  i n s t ab i l i t y  becomes now: 

t o  one. 

This inequality i s  sa t i s f ied  for  any ka. Thus, the v = 2 mode 

is  a l s o  unstable for a l l  mall ak. Eq. (4.13) becomes f o r  this  

case: 

e =  

me opposite case, ka >>I can be treated fo r  a l l  modes sbnd.- 

taneously. Using (4.2), w e  obtain from (4.14): 

For e, w e  obtain: 

e V  4-m. (4.20) 
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If kaq << 1, but ka >> 1, a l l  our assumptions are satisfied, 

including (4.8). This ins tab i l i ty  seems to be particularly 

dangerous because, being a short wave length instabil i ty,  it 

cannot be stabilized by choosing a particular geonetry, Because 

of' the short wave length, f i n i t e  Lasmor radius effects may became 

important, but it cannot be said, at  the present stage of the 

investigation, i f  these effects have a stabil izing or  de-stabilizing 

tendency. 

To conclude t h i s  paragraph, we l i s t  the most important 

formulae derived, i n  terns of frequencies, together with their  

assumptions. 

Diocotron bbde: 

2 
q <e (ka) << 1 : w / ~ ,  = q(3 - +) f i 2 V q 1/2. (v 3> 1) (4. l l a )  

ka >> 1 : Assumption (4.8) violated, no results.  

Cyclotron Mode : 
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Instability for k a  < 0.53. 

v = 2: w/w, = -EX + 3 .+ i q  ( h l 2  (4.194 

Ins tab i l i ty  f o r  any small (ka). 

ka >> 1: 
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V. DISCUSSION 

The resu l t s  j u s t  quoted are quite discomforting i n  view 

of the proposed Heavy Ion Plasma Accelerator, In the i r  basic 

paper, James, Lev, Bethe, and Feld quote the results of a 

corresponding calculation i n  s t ra ight  geometry. One might 

conclude tha t  similar resu l t s  hold order of magnetude-wise 

also f o r  the HIPAC geometry. The above calculation has shown 

tha t  there is a substantial difference. This i s  readily seen 

i f  we compare the various growth rates. 

For the diocotron instabi l i ty ,  Bun- e t  ala4 find 

i n  the long wavelength l i m i t :  

up2 Im IJJ = ka ; ka << 1. 
C 

  heir equation 5.5) 

From our Eq. (klla), we obtain: 

It has t o  be kept i n  mind that  i n  these twr, formulae the same 

symbols mean different things. In the s t ra ight  geometry, k i s  



the wavelength along the y-axis; i n  cylindrical geometry, it 

i s  along the z-axis. a i s  the half-width of the plasma slab 

i n  straight geometry; here, it i s  the plasma radius. Actually, 

k i n  slab geometry resembles more our v, but w e  have seen i n  

our analysis that  disturbances with v = 0 are all stabl-e. 

The cyclotron ins tab i l i ty  i n  slab geometry has a growth 

rate: 

(Eq. (9.10) i n  Ref. 4) 

The corresponding equation would be (4.21a) With 

1 Im w= 6 wcq Jh, - (ka - 2 ~ ) ~  . 

Whereas the first growth ra te  becomes insignificantly mall, as 

q 4 0, the second remains appreciable. For example, for  

n ‘v ~ $ - ~ c m - ~ ,  q = 10 , the e-folding times are of the order of 

microseconds or shorter. 

-2 
e 
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What i s  the physical reason for  t h i s  striking difference? 6 

The cyclotron ins tab i l i ty  i s  due t o  a resonance of the Doppler- 

shifted frequency of the wave with the electron gyrofrequency. 

li? st raight  geometry, we have necessarily a 'tsliptt,  i e ee ,  the 

d r i f t  velocity of the electron beam varies from point t o  point. 

Therefore, a resonance may occur only i n  a very thin layer of 

the beam, a l l  the rest i s  not quite i n  resonance, In our analysis, 

however, we considered a plasma which was rotating l ike  a r igid 

column. If our wave of the form exp[i(wt + v'p + kz)] i s  i n  

resonance at .one layer, it is i n  resonance with the whole column. 

It i s  quite natural that we expect a stronger instabi l i ty ,  

can be seen easily from (4.17a) and (4.19a) that the real frequency 

It 

of  the wave i s  just the  gyration frequency of the electrons plus the 

rotation frequency of the plasma. 

How w e l l  our asswnption of a r igidly rotating p l a sm can 

be realized i n  an experiment remains t o  be seeno It may be that  

experimentally we always have a gently decreasing density distrib- 

ution such tha t  not the plasma as a whole, but only a th in  layer, 

can resonate. Under these circumstances, we expect slow growth 

rates comparable t o  those found by Buneman. 

This ins tab i l i ty  might f l a t t en  the density prof i le  which 

then gives r i s e  t o  a more violent ins tab i l i ty  i n  the flattened 
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area. This i n  turn 

the effective decay 

broadens the density plateau further. Thus, * 

t i m e  still might be quite short. 

A s tabi l iz ing effect  might be introduced by taking in to  

account conducting w a l l s .  

be f in i te ,  whereas i n  our analysis we had assumed R = OD. 

The radius R of Fig. ( l b )  would then 

Also, f i n i t e  temperature should be taken in to  account by 

introducing a pressure term i n  Eq. (2.2) and adding an equation 

of s ta te .  This increases the degrees of freedom of our system, 

and the effect  i s  expected t o  be de-stabilizing rather t h m  

stabi l iz ing e 
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F I G W  CAPTIONS 

Figure la Carthesim slab geometry as considered by Buneman, 

Levy, and Linson. 

Figure 1b Cylindrical geometry, which simulates the toroidal 

HIPAG - geometry. The cylindrical geometry has been 

considered in this work. 
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